Achieving Efficient and Privacy-Preserving Cross-Domain Big Data Deduplication in Cloud

Home / Hadoop / Achieving Efficient and Privacy-Preserving Cross-Domain Big Data Deduplication in Cloud

Achieving Efficient and Privacy-Preserving Cross-Domain Big Data Deduplication in Cloud

Secure data deduplication can significantly reduce the communication and storage overheads in cloud storage services, and has potential applications in our big data-driven society. Existing data deduplication schemes are generally designed to either resist brute-force attacks or ensure the efficiency and data availability, but not both conditions. We are also not aware of any existing scheme that achieves accountability, in the sense of reducing duplicate information disclosure (e.g., to determine whether plaintexts of two encrypted messages are identical). In this paper, we investigate a three-tier cross-domain architecture, and propose an efficient and privacy-preserving big data deduplication in cloud storage (hereafter referred to as EPCDD). EPCDD achieves both privacy-preserving and data availability, and resists brute-force attacks. In addition, we take accountability into consideration to offer better privacy assurances than existing schemes. We then demonstrate that EPCDD outperforms existing competing schemes, in terms of computation, communication and storage overheads. In addition, the time complexity of duplicate search in EPCDD is logarithmic.

Related Post

Leave a Reply