Efficient Multi-dimensional Fuzzy Search for Personal Information Management Systems

Home / Data mining / Efficient Multi-dimensional Fuzzy Search for Personal Information Management Systems
Name Efficient Multi-dimensional Fuzzy Search for Personal Information Management Systems
Technology .net
Category Data Mining
Description With the explosion in the amount of semi-structured data users access and store in personal information management systems, there is a critical need for powerful search tools to retrieve often very heterogeneous data in a simple and efficient way. Existing tools typically support some IR-style ranking on the textual part of the query, but only consider structure (e.g., file directory) and metadata (e.g., date, file type) as filtering conditions. We propose a novel multi-dimensional search approach that allows users to perform fuzzy searches for structure and metadata conditions in addition to keyword conditions. Our techniques individually score each dimension and integrate the three dimension scores into a meaningful unified score. We also design indexes and algorithms to efficiently identify the most relevant files that match multi-dimensional queries. We perform a thorough experimental evaluation of our approach and show that our relaxation and scoring framework for fuzzy query conditions in noncontent dimensions can significantly improve ranking accuracy. We also show that our query processing strategies perform and scale well, making our fuzzy search approach practical for every day usage.
IEEE Paper Yes
IEEE Paper Year 2012

Contact Form

Previous
Next