Infrequent Weighted Itemset Mining Using Frequent Pattern Growth

Home / Data mining / Infrequent Weighted Itemset Mining Using Frequent Pattern Growth

Infrequent Weighted Itemset Mining Using Frequent Pattern Growth

Frequent weighted itemsets represent correlations frequently holding in data in which items may weight differently. However, in some contexts, e.g., when the need is to minimize a certain cost function, discovering rare data correlations is more interesting than mining frequent ones. This paper tackles the issue of discovering rare and weighted itemsets, i.e., the infrequent weighted itemset (IWI) mining problem. Two novel quality measures are proposed to drive the IWI mining process. Furthermore, two algorithms that perform IWI and Minimal IWI mining efficiently,driven by the proposed measures, are presented. Experimentalresults show efficiency and effectiveness of the proposed approach.

Related Post

Leave a Reply