Linear distance coding for image classification

Home / Image Processing / Linear distance coding for image classification
Name Linear distance coding for image classification
Technology Dot net, MATLAB
Category Image Processing
Description The traditional SPM approach based on bag-of-features (BoF) requires nonlinear classifiers to achieve good image classification performance. This paper presents a simple but effective coding scheme called Locality-constrained Linear Coding (LLC) in place of the VQ coding in traditional SPM. LLC utilizes the locality constraints to project each descriptor into its local-coordinate system, and the projected coordinates are integrated by max pooling to generate the final representation. With linear classifier, the proposed approach performs remarkably better than the traditional nonlinear SPM, achieving state-of-the-art performance on several benchmarks. Compared with the sparse coding strategy [22], the objective function used by LLC has an analytical solution. In addition, the paper proposes a fast approximated LLC method by first performing a K-nearest-neighbor search and then solving a constrained least square fitting problem, bearing computational complexity of O(M + K2 even with very large codebooks, our system can still process multiple frames per second. This efficiency significantly adds to the practical values of LLC for real applications. Hence even with very large codebooks, our system can still process multiple frames per second. This efficiency significantly adds to the practical values of LLC for real applications.
IEEE Paper Yes
IEEE Paper Year 2011

Contact Form

Previous
Next