Performance Analysis of Scheduling Algorithms for Dynamic Workflow Applications

Home / Hadoop / Performance Analysis of Scheduling Algorithms for Dynamic Workflow Applications

Performance Analysis of Scheduling Algorithms for Dynamic Workflow Applications

In recent years, Big Data has changed how we do computing. Even though we have large scale infrastructure such as Cloud computing and several platforms such as Hadoop available to process the workloads, with Big Data there is a high level of uncertainty that has been introduced in how an application processes the data. Data in general comes in different formats, at different speed and at different volume. Processing consists of not just one application but several applications combined to form a workflow to achieve a certain goal. With data variation and at different speed, applications execution and resource needs will also vary at runtime. These are called dynamic workflows. One can say that we can just throw more and more resources during runtime. However this is not an effective way as it can lead to, in the best case, resource wastage or monetary loss and in the worst case, delivery of outcomes much later than when it is required. Thus, scheduling algorithms play an important role in efficient execution of dynamic workflow applications. In this paper, we evaluate several most commonly used workflow scheduling algorithms to understand which algorithm will be the best for the efficient execution of dynamic workflows.

Related Post

Leave a Reply