Sensitive Label Privacy Protection on Social Network Data
This paper is motivated by the recognition of the need for a ner grain and more personalized privacy in data publication of social networks. We propose a privacy protection scheme that not only prevents the disclosure of identity of users but also the disclosure of selected features in users’ proles. An individual user can select which features of her prole she wishes to conceal. The social networks are modeled as graphs in which users are nodes and features are labels. Labels are denoted either as sensitive or as non-sensitive. We treat node labels both as background knowledge an adversary may possess, and as sensitive information that has to be protected. We present privacy protection algorithms that allow for graph data to be published in a form such that an adversary who possesses information about a node’s neighborhood cannot safely infer its identity and its sensitive labels. To this aim, the algorithms transform the original graph into a graph in which nodes are suciently indistinguishable. The algorithms are designed to do so while losing as little information and while preserving as much utility as possible. We evaluate empirically the extent to which the algorithms preserve the original graph’s structure and properties. We show that our solution is eective, ecient and scalable while oering stronger privacy guarantees than those in previous research.